EMPIRICAL CHARACTERISTIC FUNCTION APPROACH TO GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION WITH PARAMETERS ESTIMATED BY MLE OR ElSE
نویسندگان
چکیده
We consider goodness-of-fit tests of the Cauchy distribution based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard Cauchy distribution. For standardization of data Ciirtler and Henze (2000, Annals of the Institute of Statistical Mathematics, 52, 267-286) used the median and the interquar-tile range. In this paper we use the maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE), which minimizes the weighted integral. We derive an explicit form of the asymptotic covariance function of the characteristic function process with parameters estimated by the MLE or the EISE. The eigenvalues of the covariance function are numerically evaluated and the asymptotic distributions of the test statistics are obtained by the residue theorem. A simulation study shows that the proposed tests compare well to tests proposed by Giirtler and Henze and more traditional tests based on the empirical distribution function.
منابع مشابه
Empirical Characteristic Function Approach to Goodness-of-Fit Tests for the Cauchy Distribution with Parameters Estimated by MLE or EISE
We consider goodness-of-fit tests of Cauchy distribution based on weighted integrals of the squared distance of the difference between the empirical characteristic function of the standardized data and the characteristic function of the standard Cauchy distribution. For standardization of data Gürtler and Henze (2000) used the median and the interquartile range. In this paper we use maximum lik...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملGoodness-of-Fit Tests for Symmetric Stable Distributions – Empirical Characteristic Function Approach
We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard symmetric stable distribution with the characteristic exponent α estimated from the data. We treat α as an unknown parameter, but for theoretical simplicity w...
متن کاملOn the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality
It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...
متن کاملApplication of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system
One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropri...
متن کامل